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LETTER TO THE EDITOR

Symmetry breaking in the tunnelling conductance of a
superconducting vortex

M Leadbeater and C J Lambert
School of Physics and Chemistry, Lancaster University, Lancaster LA1 4YB, UK

Received 13 March 1996

Abstract. Recent STM experiments onc-axis tunnelling into a vortex core of YBCO have
yielded a sub-gap differential conductance which is not invariant under a reversal of the applied
bias. By computing the differential conductanceG(E) of a normal–superconducting contact
to all orders in the tunnelling strength, we predict that in the absence of open channels in the
superconductor,G(E) is necessarily an even function ofE and that an asymmetric current–
voltage characteristic implies the existence of propagating bound-states within the vortex core.

Symmetries in physical measurements often provide powerful insight into underlying
microscopic phenomena. In the tunnelling limit, if the single particle density of states
at the Fermi energy is a constant, it is well known that the sub-gap conductanceG(eV )

of normal–insulating–superconductor (NIS) junctions [1–4] is an even function of the bias
voltageV . This symmetry is present in some STM-based experiments on both conventional
and high temperature superconductors [5, 6], but in a recent experiment [7] on tunnelling
from a normal STM tip into a vortex of YBCO, it is broken.

The aim of this letter is to present an analytic theory of the sub-gap conductance, which
highlights the conditions under which asymmetries occur. We present a new result for
the conductance between a normal conductor and a superconductor, valid to all orders in
the tunnelling strength, which provides a general condition for symmetry breaking. Our
key result is that within mean-field BCS theory, the existence of asymmetries implies the
presence of propagating quasi-particle states. For the first time, we also present numerical
results for the conductance of a vortex, which are valid in the limit that the superconducting
coherence length is of order the Fermi wavelength.

When describing transport across the interface between a normal conductor and a
superconductor, it is convenient to write the total HamiltonianH in the form H =
HAA + HBB + HAB , whereHAB has the structure

HAB =
(

0 W

W † 0

)
and W is a matrix of exchange integrals describing the coupling between the the normal
conductor (A) to the superconductor (B). If gA and gB are the Green functions of the
separate conductors before contact is made, the Green function of the superconductor after
making contact is given by [8, 9]

G−1
BB = g−1

B − 6 + i0 (1)

where

6 − i0 = W †gAW. (2)
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In what follows, we consider the case where the normal conductor is a crystalline, straight
wire of constant cross-section, described by a real Hamiltonian and possessing a set of
channels{|n̄〉}, of which some are closed, while others are propagating. If the propagating
channels are denoted|n〉, then the Green function of the isolated wire, before contact is
made with the superconductor, can be written [8, 9]

gA =
∑

n

|n〉gn〈n| +
∑

n̄

|n̄〉gn̄n̄〈n̄| =
∑

n

|n〉gn〈n| + σ ′ (3)

where the second sum is over states|n̄〉 orthogonal to open channels andσ ′ is a Hermitian
self-energy matrix. With this notation, one finds6 − i0 = σ ′ + σ − i0, where

σ =
∑

n

σ (n) and 0 =
∑

n

0(n) (4)

with

0(n) = −W †|n〉[Im gn]〈n|W and σ(n) = W †|n〉[Regn]〈n|W. (5)

In these expressions both0(n) and σ(n) are Hermitian;0(n) can be viewed as a matrix
of inverse lifetimes arising from the presence of channeln and σ(n) the corresponding
self-energy matrix.

To obtain equilibrium transport properties, we follow references [10, 11], where it is
noted that in the absence of inelastic scattering, dc transport is determined by the quantum
mechanical scattering matrixs(E, H), which yields scattering properties at energyE, of a
phase-coherent structure described by a HamiltonianH . For a structure possessing open
scattering channels labelled by quantum numbersn, the squared modulus of the matrix
elementsn,n′(E, H) is the outgoing flux of quasi-particles along channeln, arising from
a unit incident flux along channeln′. Since channels are associated with quasi-particles
labelled by a discrete quantum numberα (α = +1 for particles, −1 for holes), we
write n = (l, α), where l labels all other quantum numbers. With this notation, the
scattering matrix elementssn,n′(E, H) = s

α,β

l,l′ (E, H) satisfy s†(E, H) = s−1(E, H) and
st (E, H) = s(E, H ∗). Furthermore ifE is measured relative to the condensate chemical
potentialµ, then the particle–hole symmetry relationsα,β

l,l′ (E, H) = αβ[s−α,−β

l,l′ (−E, H)]∗

is satisfied. For a scatterer formed from contact between a crystalline, normal lead and
a superconductor, it is convenient to writel = (i, a), where i = A (i = B) for a
propagating channel belonging to the normal lead (superconductor). Propagating channels
in the superconductor can arise at energies greater than the superconducting energy gap,
or under sub-gap conditions in the presence of a vortex. With this notation, and writing
l′ = (j, b), equilibrium transport properties can be expressed in terms of the quantity

P
α,β

i,j (E, H) =
∑
a,b

|sα,β

(i,a),(j,b)(E, H)|2 (6)

which is the probability of reflection (i = j ) or transmission (i 6= j ) of a quasi-particle of
type β in j to a quasi-particle of typeα in i. For α 6= β, P

α,β

A,A(E, H) is referred to as an
Andreev reflection probability, while forα = β, it is a normal reflection probability.

To compute scattering coefficients, we note [9] that the probability of reflecting from
channeln of the normal conductorA to channeln′ of conductorA can be written

|snn′ |2 =
{

Rnn = |1 − 2i Tr{0(n)GBB}|2 for n = n′

Tnn′ = 4 Tr{0(n)GBB0(n′)G†
BB} otherwise.

(7)

Furthermore at zero temperature [10, 11], the differential conductance at potential difference
v = E/e reduces to

G(E) = Nα
A(|E|) − P

α,α
A,A(|E|) + P

−α,α
A,A (|E|) (8)
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whereα = sign(E). Writing n = (A, a, α) andn′ = (A, b, β) and substituting (7) into (6)
yields

P
αβ

A,A = [N − 2i Tr{0(α)(GBB − G
†
BB)}]δαβ + 4 Tr{0(α)GBB0(β)G

†
BB} (9)

where0(α) = ∑
a 0(A, a, α). From this the conductance (8) becomes

G(E) = 2i Tr{0(α)(GBB − G
†
BB)} − 4

∑
β=±1

β Tr{0(βα)GBB0(α)G
†
BB}. (10)

A further simplification is obtained by noting that from equation (1)

[GBB − G
†
BB ] = [GBB(G

†
BB)−1G

†
BB − GBB(GBB)−1G

†
BB ]

= [GBB(g
†
B)−1G

†
BB − GBB(gB)−1G

†
BB ] − 2iGBB0G

†
BB

and therefore (10) can be written

G(E) = 2i Tr{0(α)[GBB((g
†
B)−1 − (gB)−1)G

†
BB ]} + 4

∑
β=±1

Tr{0(β)GBB0(−β)G
†
BB} (11)

whereα = sign(E).
Equation (11) is a key result of this letter. It is exact to all orders in the coupling

W and immediately highlights the symmetry breaking role of propagating channels in the
superconductor. If the superconductor contains no open channels of energyE, then gB

is Hermitian and the first ‘single-particle’ term on the right-hand-side vanishes. In this
case only the second ‘two-particle’ term survives, which is independent ofα and therefore
invariant under a reversal of the bias voltage. On the other hand if open channels are present
in the superconductor,gB is no longer Hermitian and the first term survives. Since this
term depends explicitly onα, the above symmetry is broken. Hence we conclude that in
the absence of inelastic scattering, an asymmetric current–voltage characteristic implies the
existence of propagating states in the superconductor.

This symmetry breaking is absent from the theory of reference [4], because it is assumed
a priori that there are no propagating channels in the superconductor. It is absent from the
description of reference [3], because only the density of states averaged over all quasi-
particle types is computed. To illustrate this feature, we note that in the tunnelling limit,
whereGBB is not strongly modified by the presence of the contact, it is useful to expand
G(E) to lowest order in0 and6. If gB is Hermitian the dominant contribution is obtained
by replacingGBB by gB in the second term on the right-hand-side of (11) to yield

G(E) ≈ 8 Tr{0(−α)gB0(α)gB}
which is simply 2P −αα

A,A . On the other hand, ifgB is not Hermitian, the dominant contribution
is obtained by replacingGBB by gB in the first term on the right-hand-side of (11) to yield

G(E) ≈ 2i Tr{0(α)(gB − g
†
B)} = −4 Tr{0(α)[ImgB ]}

which as noted above, vanishes in the absence of propagating channels in the superconductor.
This is a standard result of tunnelling theory and has been used in recent calculations of
the tunnelling conductance [12,13]. More generally, in the presence of intimate contact,
equation (11) should be used.

SincegB is a matrix in Nambu space with sub-matricesg
αβ

B and 0(α) projects on to
α-type quasi-particles, this reduces toG(E) ≈ −4 Tr{0(α)[Imgαα

B ]} and for a point contact
at positionr, becomes

G(E) ≈ 4π0(α, r)Nα
B(|E|, r) (12)
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whereNα
B(|E|, r) is the local density ofα-type quasi-particle states and0(α, r) characterizes

the tunnelling strength. If0(α, r) varies only slowly with E on the scale of the
superconducting energy gap, this expression demonstrates that in the tunnelling limit,
asymmetries occur, whenever the differenceδNB(E) = N+

B (|E|, r) − N−
B (|E|, r) is non-

zero. This situation, which is not described by the theory of [3], arises if the condensate
potentialµ lies close to a van Hove singularity and therefore the existence of asymmetries
in high temperature superconductors should depend sensitively on doping.

Figure 1. A superconductor of lengthLs (shaded) connected to normal wires with the same
cross-section as the superconductor. To simulate a NISN structure, a barrier (shown lightly
shaded) separates the left-hand normal wire from the superconductor, whereas no such barrier
is present at the right-hand N–S interface. (b) The variation of the magnitude of the order
parameter within ana–b plane of the superconductor.

To verify the above analytic predictions, we now present numerical results for tunnelling
into the vortex core of a short-coherence-length superconductor. Whenξ is of order the
Fermi wavelength, a quasi-classical approach is inappropriate and therefore we analyse a
three-dimensional tight-binding system described by a Bogoliubov–de Gennes operator of
the form

H =
(

H0 1

1∗ −H ∗
0

)
.

In this equationH0 is a nearest-neighbour Anderson Hamiltonian on a cubic lattice of the
form H0 = ∑

i |i〉εi〈i| − ∑
ij |i〉γij 〈j | and 1 is a diagonal order parameter matrix. For a

system of finite cross-section, once these matrices are specified, the scattering matrix can
be computed exactly, as outlined in [10]. In what follows, for a sitei belonging to the
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Figure 2. The differential conductance as a function of energy for a system with a uniform
barrier of areaM2.

superconductor,1 has matrix elements1ii = 1(ri) exp iθi , where the magnitude of the
order parameter is chosen to satisfy

1(ri) =
{

10ri/ξ for ri 6 ξ

10 otherwise

and for a vortex lying on thec-axis, [ri, θi ] are the polar coordinates of a sitei in the a–b

plane. For all other sites,1ii = 0.

Figure 3. The density of statesN(E) corresponding to the conductance of figure 2.

The hopping elementsγij are non-zero for nearest-neighbour sites only. To simulate
an anisotropic Fermi surface and to set the energy scale, ifi andj are nearest neighbours
belonging to the samea–b plane, or if both belong to a normal wire, thenγij = 1, whereas
if they are neighbouring sites belonging to adjacenta–b planes and both belong to the
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superconductor thenγij = 1/5.
The simulated structure is the infinitely long parallelopiped shown in figure 1(a), with

a–b planes of areaM2 sites and a vortex parallel to thec-axis, passing through the centre
of the sample. A superconductor of lengthLs sites, is connected to semi-infinite normal
wires of cross-sectional areaM2. Between the left wire and the left-hand surface of the
superconductor is a tunnel barrier of widthLb sites. For all sitesi, except those belonging
to the tunnel barrier, the diagonal matrix elementεi = ε0. If i belongs to the right-hand
surface of the superconductor andj to the surface of the right-hand normal lead, then the
bulk valueγij = 1/5 is assigned. This NISN structure allows for the possibility that sub-
gap quasi-particles can propagate through the vortex from the left to the right normal wire.
Within the barrier, the diagonal elements ofH0 are set toε0 + 10 and those of1 set to
zero.

In what follows we shall make use of two models for the barrier. For the results of
figures 2 and 3, all hopping elements between barrier sites and the left-hand surface of the
superconductor are assigned their bulk value ofγij = 1/5 and sites belonging to the barrier
are assigned a diagonal elementεi = ε0 + 10. Figure 2 shows the differential conductance
G(E) as a function ofE, obtained with the choiceM = 7, Lb = 1 andLs = 35, 10 = 2.4
andε0 = −1, while figure 3 shows the corresponding quasi-particle density of states. The
two sets of results are clearly correlated, but whereas the density of states is an even function
of E, the conductance does not possess this symmetry.

Figure 4. These show the differential conductance as a function of energy when contact is made
with four different points along the vortex: (a) corresponds to contact outside the vortex and
(d) to contact at the centre of the vortex. For this systemε0 = 0, corresponding to a half-filled
band.

The above model describes transport through a barrier of uniform width over the
interface between the superconductor and left-hand normal wire. To simulate an STM
tip of atomic dimensions, we also analyse a second model, in which diagonal elements
of sites belonging to the barrier are assigned a bulk value ofεi = ε0. However all but
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Figure 5. These show the same graphs as figure 4, but withε0 = −1. Consequently the partial
density of states for a single quasi-particle type is no longer an even function of energy.

a single hopping element between barrier sites and those on the left-hand surface of the
superconductor are set to zero. To simulate an STM tip, the single non-zero hopping
element is assigned a valueγ0 � 1 and the positionr0 of the non-zero element varied to
yield different points of contact.

Figure 4 shows four graphs of the differential conductance for contact points starting
from r0 > ξ (part a) and moving towardsr0 = 0 at the core (part d). For these results,
M = 9, Ls = 35, ε0 = 10−6 and γ0 = 1/5. This choice ofε0 corresponds to half-
filling, with δNB(E) = 0 and therefore as predicted by equation (12), the conductance is
an even function ofE. To illustrate the sensitivity to band-filling, figure 5 shows four
results obtained with the same parameters as figure 4, except thatε0 = −1. In this case
δNB(E) 6= 0 and gross asymmetries in the differential conductance are obtained.

In conclusion, we have presented new results for the differential conductanceG(E) of a
normal–superconducting contact. We predict that whatever the strength of the contact, in the
absence of open channels in the superconductor,G(E) is necessarily an even function ofE

and that an asymmetric current–voltage characteristic implies the existence of propagating
states. In the tunnelling limit, symmetry breaking arises from the difference between particle
and hole densities of states and if the Fermi energy is close to a van Hove singularity,
symmetry breaking will be sensitive to doping.

Support from the EPSRC, NATO, the Swiss National Science Foundation, the Institute for
Scientific Interchange and the EC is acknowledged.
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